Are your business processes ready for automation? | Logic20/20

Digital Transformation


Are your business processes ready for automation?

Intelligent automation—applying artificial intelligence (AI) in automating routine tasks usually performed by humans—has emerged as the next leap in the enterprise’s journey towards digital transformation. According to Forrester Research, the automation market is on pace to reach $22 billion, up from just $250 million in 2016. In a recent survey of operations decision makers, 74 percent reported having at least one automation pilot underway with plans to roll it into production.


With an array of new, cost-effective tools now available—most of which are designed to integrate with Salesforce and other popular platforms—businesses are eager to transition repetitive, rule-based tasks to "digital workers" and to enjoy automation's promises of cost efficiencies, time savings, and quality improvements. However, successful implementation of intelligent automation requires choosing the right processes to automate and making sure your data is up to the task.


Identifying processes for automation

While intelligent automation can be an ideal solution for organizations looking to lower costs and improve productivity, not all business processes are ideal candidates for handing over to digital workers. Most businesses find that automation delivers the greatest benefits when used in processes that meet the following criteria:


Based in well-defined rules: Digital workers function best when they have a set of unambiguous rules to work with—the fewer exceptions, the better.

Access multiple systems: One of the biggest advantages intelligent automation offers over both traditional automation and human effort is its ability to process inputs from multiple systems simultaneously.

Subject to human error: When a human worker performs a low-skill task over and over—like copying and pasting data—the risk for error can become dangerously high. Digital workers can perform the same routine tasks 24 hours a day, seven days a week, at consistently high levels of accuracy.

Limited need for human intervention: Processes that a digital worker can execute autonomously from beginning to end, such as routine invoice processing, are ideal candidates for intelligent automation.

Not subject to change: Automation platforms are more likely to pay off if the process being automated is stable and not likely to change significantly.


Amit Unadkat explains more about preparing your processes for RPA:


Preparing data for intelligent automation

Automation platforms function on data, and quality data yields quality outputs. Organizations looking to leverage intelligent automation will want to consider the following three initiatives before proceeding to the implementation process.


1. Consolidate duplicate records

Recently one of our clients requested our help in integrating their enterprise customer data. As we reviewed their customer records in Salesforce, we discovered numerous instances in which multiple accounts had been created for different variations of the same company (for example, “Acme,” “Acme Company,” “Acme Widget Company, Inc.,” etc.) and for different locations. As a result, the client had approximately 200,000 customer records that involved some form of duplication.


Had this client chosen to implement an automation platform using their data in its original state, not only would they have wasted time and processing power on thousands of duplicate records, but significant manual effort would be needed to review and correct the output, reducing or even eliminating the efficiencies the company was hoping to achieve.


Looking at one of the most common use cases of automation—invoice processing—duplicated data can result in a customer being double-billed for a single product or service. Or the customer may receive dozens of invoices for products purchased across the company, each requiring separate processing. By consolidating duplicate records before going down the automation path, enterprises can ensure that their digital workers have a streamlined database to work with, resulting in greater efficiencies and a reduced risk of errors.


2. Eliminate orphaned data

Just about every organization has had the experience of a CMO or CIO initiating a massive data-collection project, only to have the initiative be canceled or abandoned. Even after the project goes away, the data usually remains stored away somewhere—unused, unexamined, and undocumented.


There are perils to the “retain everything” approach to data storage from a compliance perspective. The same orphaned data that can get an organization in trouble under privacy laws can also bog down automation platforms with outdated information that no longer serves the business’ purposes. A comprehensive data audit offers the opportunity to shine a light on forgotten data stores in all areas of the organization, assess their usefulness (or lack thereof), and deal with them appropriately before proceeding with automation.


3. Update inefficient processes

If a process is inefficient to start with, robotic automation will simply add another layer of technology—it won’t fix the underlying problems. Before an organization spends the time and resources to implement an automation platform, a thorough evaluation of the process will help identify technologies that need to be updated and procedures that can be streamlined. Once the organization eliminates these inefficiencies, implementation of an automation platform can deliver on its promises of lower costs, faster turnaround, and improved quality.


Facing increased competition and escalating customer expectations, businesses across industries are under pressure to reduce costs, improve productivity, and lower the risk of costly human errors. Intelligent automation has the potential to deliver on all three counts. When organizations lay a solid foundation by identifying the right processes and preparing their data, they set themselves up to realize the benefits of automation, both now and in the future.

Ready to take the next step towards digital transformation?

We can help.


The RPA Market Will Grow To $22 Billion By 2025, Forrester

The New Frontier of Automation: Enterprise RPA, UIPath